a2 United States Patent

Suresh et al.

US009165099B2

(10) Patent No.: US 9,165,099 B2
(45) Date of Patent: Oct. 20, 2015

(54) ADAPTIVE CLOCK MANAGEMENT IN
EMULATION

(71) Applicant: Mentor Graphics Corporation,
Wilsonville, OR (US)

(72) Inventors: Krishnamurthy Suresh, New Delhi
(IN); Charles W. Selvidge, Wellesley,
MA (US); Sanjay Gupta, Noida (IN);
Amit Jain, Sriganganaga (IN); Satish
Kumar Agarwal, Giridih (IN)

(73) Assignee: Mentor Graphics Corporation,
Wilsonville, OR (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/087,531

(22) Filed: Now. 22, 2013

(65) Prior Publication Data
US 2015/0100931 Al Apr. 9, 2015

(51) Int.CL

GOGF 17/50 (2006.01)
(52) US.CL
CPC oo, GOGF 17/505 (2013.01)

Logic For Generating Clock
Suspension Allowance Signal

(58) Field of Classification Search
USPC ottt 716/104
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,222,315 B2* 5/2007 Schubertetal. 716/106

* cited by examiner
Primary Examiner — Thuan Do

(57) ABSTRACT

Aspects of the invention relate to techniques for adaptive
clock management in emulation. A clock suspension request
signal, indicating when a suspension of design clock signals
in an emulator is needed, is generated based on activity status
information of the emulator with one or more emulator
resources such as software environment. A clock suspension
allowance signal, indicating whether a suspension of design
clock signals is permitted considering dynamic targets in the
emulator, is generated based on slack information related to
one or more clock signals associated with one or more
dynamic targets of the emulator. Based on the clock suspen-
sion request signal and the clock suspension allowance sig-
nal, a clock suspension signal is generated for enabling tem-
porary design clock suspensions.

27 Claims, 8 Drawing Sheets

Logic For Generating Clock
Suspension Request Signal

21

je

Logic For Generating Clock
Suspension Signal

22

4

23

()

Adaptive clock
management logic
200

Clock Generation System

240

U.S. Patent Oct. 20, 2015 Sheet 1 of 8 US 9,165,099 B2

-t
—
O

: Synthesizing logic that can generate a clock
suspension request signal based on activity status
of an emulator with one or more emulator resources

\ 4

o~
N

: Synthesizing logic that can generate a clock
suspension allowance signal based on slack
information

\

: Synthesizing logic that can generate a clock
suspension signal for enabling temporary
suspensions of design clock signals in the emulator
based on the clock suspension request signal and
the clock suspension allowance signal

i
(e}

Flow chart
100

FIG. 1

US 9,165,099 B2

Sheet 2 of 8

Oct. 20, 2015

U.S. Patent

V74

WweisAg uonrIauas oon

¢ '9Old

002
o160| Juswebeuew

}o0[0 aAldepy

|44

(o)

jeubig uoisuadsng
¥00]9) Bunessuar) 104 91607

54

jeudig 1sanbay uoisuadsng
32010 Buijeiauag) 104 01607

0cc

jeubis sauemoyy uoisuadsng
o010 Bunelsuas) Jo4 01607

US 9,165,099 B2

Sheet 3 of 8

A

€ 'Old

uoisusdsng

]

m aouemole

m co_wcmgmzmxoo_o
m

’ { ° vﬂ]ﬁ\/\/d/ AT A mX 3) 30BS WNWIUIA

T 00000

9 v Z Y00 10} Yor|S

Oct. 20, 2015

1senbal
uoIsuadsns 30010

J W Z 2010

U.S. Patent

P L %0010

US 9,165,099 B2

Sheet 4 of 8

Oct. 20, 2015

U.S. Patent

12y FOV4EALNI azv £z¥ IDIAIA 1Zb 617 IAING
MHOMLIAN IDIAZA LNdLNO LNdNI auvo AHOWIN WOILdO
\ iy
HSI0 DILINOYI Sty IANQ
YA SIa QUVH Liy VY
SO LINA
607 NOH P oNISSa00Nd
10%
AYOWIN WILSAS
LOP £0b LINQ ONILNGINOD

U.S. Patent

Clock 1 Slack
510

Oct. 20, 2015 Sheet 5 of 8

Clock 2 Slack
520

US 9,165,099 B2

Clock N Slack
230

Y

Minimum Slack
540

Clock Suspension
Allowance Signal
550

FIG. 5

US 9,165,099 B2

Sheet 6 of 8

Oct. 20, 2015

U.S. Patent

9

"Old

uolsuadsng

asuemoje
uoisuadsns 90D

MOB|S WNWIHUI

Z %00[0 10} %0e|S

1sanbal
uolsuadsns 320D

AR EY]
} 901D

2NoNJSell Joye|nwg

US 9,165,099 B2

Sheet 7 of 8

Oct. 20, 2015

U.S. Patent

L 'Ol4

AN

uoisuedsng
“ ” aouUBMO||B
m i uolsuadsns 300D
_—
vA m : 2 v NOB|S WNWIUIA

A 5 Vﬂ 9 Nz 0ip Joj yoeis
m “ }senbal
; m uoisuadsns »20|)
L L _ ﬁ Z 00

........... & “ m 1 %9010

Etjfimlfijl_zil_ dinjonyseul Joyenwig

US 9,165,099 B2

Sheet 8 of 8

Oct. 20, 2015

U.S. Patent

8 "Old

ploysa.y Jejng

uolisuadsng

aouUEBMO|B
uolsuadsns 300|D

MoR[S WINUIUIA

ZM00[0 Jo} yoe|s

1s8nhal
uolsuadsns 320D

¢ %3010
L %2010

ainjonuselu) Joenwg

US 9,165,099 B2

1
ADAPTIVE CLOCK MANAGEMENT IN
EMULATION

RELATED APPLICATIONS

This application claims priority to an India patent applica-
tion, entitled “Adaptive Clock Management In Emulation,”
filed on Oct. 9, 2013 and accorded Application Number 4579/
CHE/2013, which application is incorporated entirely herein
by reference.

FIELD OF THE INVENTION

The present invention relates to the field of circuit design
verification technology. Various implementations of the
invention may be particularly useful for adaptively managing
clocks in an emulation system to meet different speed require-
ments from emulator resources and dynamic targets.

BACKGROUND OF THE INVENTION

Modern integrated circuit designs have become extremely
complex. As a result, various techniques have been developed
to verify that circuit designs will operate as desired before
they are implemented in an expensive manufacturing process.
For example, logic simulation is a tool used for verifying the
logical correctness of a hardware design. Designing hardware
today involves writing a program in the hardware description
language. A simulation may be performed by running that
program. If the program (or model) runs correctly, then one
can be reasonably assured that the logic of the design is
correct at least for the cases tested in the simulation.

Software-based simulation, however, may be too slow for
large complex designs such as SoC (System on Chip) designs.
Although design reuse, intellectual property, and high-per-
formance tools all can help to shorten SoC design time, they
do not diminish the system verification bottleneck, which
consumes 60-70% of the design cycle. Hardware emulation
provides an effective way to increase verification productiv-
ity, speed up time-to-market, and deliver greater confidence
in final products. In hardware emulation, a portion of a circuit
design or the entire circuit design is emulated with an emu-
lation circuit or “emulator.”

Two categories of emulators have been developed. The first
category is programmable logic or FPGA (field program-
mable gate array)-based. In an FPGA-based architecture,
each chip has a network of prewired blocks of look-up tables
and coupled flip-flops. A look-up table can be programmed to
be a Boolean function, and each of the look-up tables can be
programmed to connect or bypass the associated flip-flop(s).
Look-up tables with connected flip-flops act as finite-state
machines, while look-up tables with bypassed flip-flops oper-
ate as combinational logic. The look-up tables can be pro-
grammed to mimic any combinational logic of a predeter-
mined number of inputs and outputs. To emulate a circuit
design, the circuit design is first compiled and mapped to an
array of interconnected FPGA chips. The compiler usually
needs to partition the circuit design into pieces (sub-circuits)
such that each fits into an FPGA chip. The sub-circuits are
then synthesized into the look-up tables (that is, generating
the contents in the look-up tables such that the look-up tables
together produce the function of the sub-circuits). Subse-
quently, place and route is performed on the FPGA chipsin a
way that preserves the connectivity in the original circuit
design. The programmable logic chips employed by an emu-
lator may be commercial FPGA chips or custom-designed
emulation chips containing programmable logic blocks.

10

15

20

25

30

35

40

45

50

55

60

65

2

The second category of emulators is processor-based: an
array of Boolean processors able to share data with one
another is employed to map a circuit design, and Boolean
operations are scheduled and performed accordingly. Similar
to the FPGA-based, the circuit design needs to be partitioned
into sub-circuits first so that the code for each sub-circuit fits
the instruction memory of a processor. Whether FPGA-based
or processor-based, an emulator performs circuit verification
in parallel since the entire circuit design executes simulta-
neously as it will in a real device. By contrast, a simulator
performs circuit verification by executing the hardware
description code serially. The different styles of execution can
lead to orders of magnitude differences in execution time.

An emulator typically has an interface to a workstation
server (workstation). The workstation provides the capability
to load the DUV (design under verification, also referred to as
DUT—design under test) model, controls the execution over
time, and serves as a debugging interface into the DUV model
on the emulator. Due to software nature of operations in the
workstation, communications between the workstation and
the emulator during emulation often require slowing down or
even temporarily suspending design clock signals running in
the emulator. This is particularly true for emulators used in a
simulation acceleration environment or in a hardware/soft-
ware co-verification environment. In addition to communica-
tions with the workstation, other activities such as the need for
multiple accesses to a hardware resource may also require
slowing down or temporarily suspending design clock signals
running in the emulator. For example, the design may need to
read/write several locations of a design memory though a
limited number of ports before the next associated design
clock rising edge. In order to emulate these operations
according to the design, the design clock signals may have to
be suspended for a number of cycles of the emulator infra-
structure clock signal. The rest of this disclosure focuses on
using communications with the workstation as an example to
illustrate various implementations of the invention. A person
of'ordinary skill in the art, however, would appreciate that the
present invention can be applied to other activities that may
need adaptive clock management according to various
embodiments of the invention.

In an in-circuit-emulation (ICE) environment, on the other
hand, an emulator models a part of a system and connects to
real hardware that serves as another part of the system. The
real hardware is often referred to as target(s). Even though the
emulator can operate at a raw speed up to a few MHz, a target
typically has to operate at a slower frequency than in a normal
operational mode to match the clock rate of the emulator. For
example, PCI’s lowest bus frequency is 33 MHz, which is too
fast for emulation.

As seen from the above, communications of an emulator
with its software environment and with its hardware targets
have conflicting clock speed preferences. This may not be
problematic as long as targets are static. A target is static if the
emulator can temporarily suspend design clock signals. Dur-
ing emulation, temporary suspension of design clock signals
can be used when there is a need to compensate for the slow
speed of software execution. Emulation resumes normally
when the design clock signals are restarted.

A dynamic target, however, requires design clock signals
to run continuously above a threshold speed. For example, if
a personal computer is connected to the emulator through a
PCle bus as a target, the protocol may run into timeout errors
if the clock signal associated with the PCle bus is stopped for
too long or is running at a speed too slow. Typically, a speed-
bridging device may be inserted between the emulator and the
dynamic target to bridge the speed gap. Even with this device

US 9,165,099 B2

3

in place, there may still be a threshold speed (although more
manageable now) above which the clock signal supplied to
the dynamic target by the emulator has to run. It is thus
desirable to search for techniques that can adaptively manage
clock signals for an emulator to optimize its overall perfor-
mance.

BRIEF SUMMARY OF THE INVENTION

Aspects of the invention relate to techniques for adaptive
clock management in emulation. With various embodiments
of the invention, logic for generating a clock suspension
request signal and logic for generating a clock suspension
allowance signal are synthesized.

The clock suspension request signal, indicating when a
suspension of design clock signals is needed, is generated
based on activity status information of an emulator with one
or more emulator resources. The one or more emulator
resources may comprise software environment such as the
workstation for the emulator. Additionally or alternatively,
the one or more emulator resources may comprise hardware
resources such as a design memory. The activity status infor-
mation may be determined based on data generation speed
information, data transfer speed information, data buffer sta-
tus information, or any combination thereof.

The clock suspension allowance signal, indicating whether
a suspension of design clock signals is permitted considering
dynamic targets in the emulator, is generated based on slack
information. The slack information may be determined based
in part on speed constraints of one or more clock signals
associated with one or more dynamic targets of the emulator.
The speed constraints of the one or more clock signals may
comprise information of a maximum number of emulator
infrastructure clock periods allowed for suspending each of
the one or more clock signals.

Logic for generating a clock suspension signal based on the
clock suspension request signal and the clock suspension
allowance signal is synthesized. The clock suspension signal
is generated for enabling temporary suspensions of design
clock signals in the emulator. The clock suspension signal
may be activated only when both of the clock suspension
request signal and the clock suspension allowance signal are
activated. Here, activation of the clock suspension request
signal indicates a clock suspension request; activation of the
clock suspension allowance signal indicates that a design
clock suspension is permitted; and activation of the clock
suspension signal enables a design clock suspension.

Various kinds of heuristics for activating the clock suspen-
sion signal may be employed to strike a desired trade-off
between minimizing activity data loss and maintaining sys-
tem performance such as speed. In some applications, the
clock suspension signal may be activated immediately after
the clock suspension request signal is activated. In some other
applications, the clock suspension signal may be activated if
a next design clock edge is for a clock signal associated with
a dynamic target. In still some other applications, the clock
suspension signal may be activated when a data buffer for
communication with the software environment is filled to a
threshold level.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flow chart describing methods for adap-
tive clock management in emulation that may be employed by
various embodiments of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 illustrates a block diagram of adaptive clock man-
agement logic that may be employed by various embodiments
of the invention.

FIG. 3 illustrates an example of clock signal waveforms for
adaptive clock management.

FIG. 4 illustrates a programmable computer system with
which various embodiments of the invention may be
employed.

FIG. 5 illustrates a block diagram of logic for generating
clock suspension allowance signal (Logic 220 in FIG. 2) that
may be employed by various embodiments of the invention.

FIG. 6 illustrates an example of clock signal waveforms for
a method of clock suspension signal activation that attempts
to minimize communication data loss.

FIG. 7 illustrates an example of clock signal waveforms for
a method of clock suspension signal activation that attempts
to minimize emulation speed loss.

FIG. 8 an example of clock signal waveforms for a method
of clock suspension signal activation that attempts to balance
communication data loss and emulation speed loss.

DETAILED DESCRIPTION OF THE INVENTION

Various aspects of the present invention relate to tech-
niques for adaptive clock management in emulation. In the
following description, numerous details are set forth for the
purpose of explanation. However, one of ordinary skill in the
art will realize that the invention may be practiced without the
use of these specific details. In other instances, well-known
features have not been described in details to avoid obscuring
the present invention.

Some of the techniques described herein can be imple-
mented in software instructions stored on a computer-read-
able medium, software instructions executed on a computer,
or some combination of both. Some of the disclosed tech-
niques, for example, can be implemented as part of an elec-
tronic design automation (EDA) tool. Such methods can be
executed on a single computer or on networked computers.

The detailed description of a method or a device sometimes
uses terms like “synthesize,” “generate” and “determine” to
describe the disclosed method or the device function/struc-
ture. Such terms are high-level abstractions. The actual opera-
tions or functions/structures that correspond to these terms
will vary depending on the particular implementation and are
readily discernible by one of ordinary skill in the art.

Although the operations of the disclosed methods are
described in a particular sequential order for convenient pre-
sentation, it should be understood that this manner of descrip-
tion encompasses rearrangements, unless a particular order-
ing is required by specific language set forth below. For
example, operations described sequentially may in some
cases be rearranged or performed concurrently. Moreover, for
the sake of simplicity, the disclosed flow charts and block
diagrams typically do not show the various ways in which
particular methods can be used in conjunction with other
methods.

FIG. 1 illustrates a flow chart 100 describing methods for
adaptive clock management in emulation that may be
employed by various embodiments of the invention. For ease
of understanding, the flow chart 100 will be described with
reference to a block diagram of adaptive clock management
logic 200 illustrated in FIG. 2 and clock signal waveforms
illustrated in FIG. 3. It should be appreciated, however, that
alternate implementations of logic for adaptive clock man-
agement may be used to perform the method of adaptive clock
management shown in the flow chart 100 according to various
embodiments of the invention. In addition, it should be appre-

US 9,165,099 B2

5

ciated that implementations of the adaptive clock manage-
ment logic 200 may be employed with other methods of
adaptive clock management according to different embodi-
ments of the invention.

In operation 110 of the flowchart 100, logic that can gen-
erate a clock suspension request signal based on activity
status information of an emulator with one or more emulator
resources is synthesized. In FIG. 2, this logic is illustrated
with a logic block 210. The one or more emulator resources
may comprise software environment such as the workstation
for the emulator. Additionally or alternatively, the one or
more emulator resources may comprise hardware resources
such as a design memory.

As noted previously, for example, communications
between the emulator and its software environment such as a
workstation often cannot keep up with the speed of the emu-
lation process. To reduce or eliminate the lag, temporary
suspensions of design clock signals in the emulator may be
performed during emulation. The clock suspension request
signal is used to indicate when a suspension of design clock
signals is needed.

The logic block 210 generates the clock suspension request
signal based on the activity status information. The activity
status information may be determined based on data genera-
tion speed information, data transfer speed information, data
buffer status information, or any combination thereof. For
example, a data buffer is often employed to facilitate data
transfer from the emulator to its software environment. By
monitoring status of the data buffer, the logic block 210
detects when data transfer starts to lag behind data generation.
The detection may trigger a change of the clock suspension
request signal, signaling a clock suspension request.

In operation 120 of the flowchart 100, logic that can gen-
erate a clock suspension allowance signal based on slack
information related to speed constraints of one or more clock
signals associated with one or more dynamic targets of the
emulator is synthesized. The slack information may be deter-
mined based on speed constraints of one or more clock signals
associated with one or more dynamic targets of the emulator.
In FIG. 2, this logic is illustrated with a logic block 220.

Also as noted previously, a clock signal for a dynamic
target cannot operate below a certain limit. To avoid problems
related to a specific dynamic target, a suspension of design
clock signals should be executed only when there is a slack
between the current clock signal speed for the specific
dynamic target and the minimal allowed speed. The logic
block 220 generates the clock suspension allowance signal to
indicate whether a suspension of design clock signals is per-
mitted considering all dynamic targets. An example of ablock
diagram for the logic block 220 is illustrated in FIG. 5. In the
figure, each of Clock 1 Slack 510, Clock 2 Slack 520 . . . Clock
N Slack 530 represents a logic block for monitoring slack
status for a specific clock signal associated with a specific
dynamic target. The slack information for individual clock
signals is analyzed by a logic block 540, Minimum Slack, to
determine minimum slack information. The minimum slack
information is provided to a logic block 550, Clock Suspen-
sion Allowance Signal, for activating/inactivating the clock
suspension allowance signal.

The clock suspension allowance signal generation is illus-
trated by a simple example shown in FIG. 3. In FIG. 3, clock
1 and clock 2 are specified by design to operate at 100 MHz
and 50 MHz, respectively. Both ofthe clock signals, however,
run at slower speeds in emulation as the emulator infrastruc-
ture clock signal operates at only 1 MHz. While there is no
constraint as to how slow the clock 1 runs, the clock 2 cannot
be operated at a speed slower than 100 KHz as it is associated

25

40

45

6

with a dynamic target. This translates to a maximum time
period of ten emulator infrastructure clock cycles for which
the clock 2 may be suspended. Because only clock 2 has a
constraint, the slack for clock 2 is the minimum slack for the
whole system. To be safe, six instead of ten emulator infra-
structure clock cycles are set as a maximum slack for design
clock suspension. In this example, the clock suspension
request signal is activated at the first dotted line 310, imme-
diately triggering a clock suspension illustrated by a signal
labeled “suspension”. The clock suspension lasts until all of
the six emulator infrastructure clock cycles are used. At the
second dotted line 320, the clock suspension allowance signal
switches to low, terminating the clock suspension despite the
fact that the clock suspension request signal is still activated.

In operation 130 of the flowchart 100, logic that can gen-
erate a clock suspension signal for enabling temporary sus-
pensions of design clock signals in the emulator based on the
clock suspension request signal and the clock suspension
allowance signal is synthesized. In FIG. 2, this logic is illus-
trated with a logic block 230. The logic block 230 receives the
clock suspension request signal and the clock suspension
allowance signal from the logic block 210 and the logic block
220, respectively, and supplies the clock suspension signal to
a clock generation system 240 for executing design clock
suspensions. The logic block 220 may also use the clock
suspension signal for determining the slack information.

The clock suspension signal may be activated only when
both of the clock suspension request signal and the clock
suspension allowance signal are activated. Exactly when to
activate the clock suspension signal depends upon the method
employed by the logic block 230. FIGS. 6-8 employ the same
example as the one in FIG. 3 to illustrate three different
methods for activating the clock suspension signal. For sim-
plicity, the clock suspension allowance signal remains acti-
vated in all of the three figures.

In FIG. 6, the logic block 230 activates the clock suspen-
sion signal immediately after the clock suspension request
signal is activated. After four emulator infrastructure clock
cycles, the clock suspension request signal switches to low,
indicating no more slowdown is needed. Accordingly, the
clock suspension signal becomes inactivated while there is
still a slack of two emulator infrastructure clock cycles left.
This approach may minimize communication data loss, but
the overall emulation speed can be sacrificed significantly.

In FIG. 7, the logic block 230 activates the clock suspen-
sion signal only when a next design clock edge is for a clock
signal associated with a dynamic target. In the figure, the
clock suspension signal is not activated immediately after the
clock suspension request signal is activated, but switches
after additional three emulator infrastructure clock cycles.
This is because the next design clock edge is for clock 2 (also
for clock 1 in this example). The clock suspension signal
remains activated for only one emulator infrastructure clock
cycle until the request signal switches to low. This tends to
favor emulation speed over communication data loss reduc-
tion.

In FIG. 8, the logic block 230 activates the clock suspen-
sion signal only when the data buffer is filled up to a pre-
defined threshold. In the illustrated example, this happens in
six emulator infrastructure clock cycles since the clock sus-
pension request signal is activated. A buffer threshold signal
is used to trigger the clock suspension signal. The predefined
threshold may be set based on a desired trade-off between the
communication data loss and the emulation speed loss. For
example, a threshold of 90% of'the data buffer would be better
for maintaining the emulation speed than for reducing com-

US 9,165,099 B2

7

munication data loss. Similarly, a low threshold might mini-
mize the risk of data loss with an increased cost of emulation
speed.

The two heuristic techniques in FIGS. 7 and 8 may be
combined as well. A safe buffer threshold may be predeter-
mined and used as an additional check for the technique in
FIG. 7. As such, maintaining the emulator speed is favored
unless the risk of data loss becomes significant.

Although four specific techniques have been discussed
here, a person of ordinary skill in the art would appreciate that
there are many other specific techniques that may vary in
degrees of trade-off and/or may use other kind of parameters
for adaptive managing design clocks.

Various embodiments of the invention may be imple-
mented through the execution of software instructions by a
computing device, such as a programmable computer. FIG. 4
shows an illustrative example of such a programmable com-
puter (a computing device 401). As seen in this figure, the
computing device 401 includes a computing unit 403 with a
processing unit 405 and a system memory 407. The process-
ing unit 405 may be any type of programmable electronic
device for executing software instructions, but will conven-
tionally be a microprocessor. The system memory 407 may
include both a read-only memory (ROM) 409 and a random
access memory (RAM) 411. As will be appreciated by those
of ordinary skill in the art, both the read-only memory (ROM)
409 and the random access memory (RAM) 411 may store
software instructions for execution by the processing unit
405.

The processing unit 405 and the system memory 407 are
connected, either directly or indirectly, through a bus 413 or
alternate communication structure, to one or more peripheral
devices. For example, the processing unit 405 or the system
memory 407 may be directly or indirectly connected to one or
more additional memory storage devices, such as a “hard”
magnetic disk drive 415, a removable magnetic disk drive
417, an optical disk drive 419, or a flash memory card 421.
The processing unit 405 and the system memory 407 also may
be directly or indirectly connected to one or more input
devices 423 and one or more output devices 425. The input
devices 423 may include, for example, a keyboard, a pointing
device (such as a mouse, touchpad, stylus, trackball, or joy-
stick), a scanner, a camera, and a microphone. The output
devices 425 may include, for example, a monitor display, a
printer and speakers. With various examples of the computer
401, one or more of the peripheral devices 415-425 may be
internally housed with the computing unit 403. Alternately,
one or more of the peripheral devices 415-425 may be exter-
nal to the housing for the computing unit 403 and connected
to the bus 413 through, for example, a Universal Serial Bus
(USB) connection.

With some implementations, the computing unit 403 may
be directly or indirectly connected to one or more network
interfaces 427 for communicating with other devices making
up a network. The network interface 427 translates data and
control signals from the computing unit 403 into network
messages according to one or more communication proto-
cols, such as the transmission control protocol (TCP) and the
Internet protocol (IP). Also, the interface 427 may employ
any suitable connection agent (or combination of agents) for
connecting to a network, including, for example, a wireless
transceiver, a modem, or an Ethernet connection. Such net-
work interfaces and protocols are well known in the art, and
thus will not be discussed here in more detail.

It should be appreciated that the computer 401 is illustrated
as an example only, and it is not intended to be limiting.
Various embodiments of the invention may be implemented

10

15

20

25

30

35

40

45

50

55

60

65

8

using one or more computing devices that include the com-
ponents of the computer 401 illustrated in FIG. 4, which
include only a subset of the components illustrated in FIG. 4,
or which include an alternate combination of components,
including components that are not shown in FIG. 4. For
example, various embodiments of the invention may be
implemented using a multi-processor computer, a plurality of
single and/or multiprocessor computers arranged into a net-
work, or some combination of both.

Some other embodiments of the invention may be imple-
mented by software instructions, stored on a non-transitory
computer-readable medium, for instructing one or more pro-
grammable computers/computer systems to perform opera-
tions such as those shown in the flow chart 400 in FIG. 4. As
used herein, the term “non-transitory computer-readable
medium” refers to computer-readable medium that are
capable of storing data for future retrieval, and not propagat-
ing electro-magnetic waves. The non-transitory computer-
readable medium may be, for example, a magnetic storage
device, an optical storage device, a “punched” surface type
device, or a solid state storage device.

CONCLUSION

While the invention has been described with respect to
specific examples including presently preferred modes of
carrying out the invention, those skilled in the art will appre-
ciate that there are numerous variations and permutations of
the above described systems and techniques that fall within
the spirit and scope of the invention as set forth in the
appended claims. For example, while specific terminology
has been employed above to refer to electronic design auto-
mation processes, it should be appreciated that various
examples of the invention may be implemented using any
desired combination of electronic design automation pro-
cesses.

What is claimed is:

1. A method, comprising:

synthesizing, using a programmable computer, logic that

can generate a clock suspension request signal based on
activity status information of an emulator with one or
more emulator resources;

synthesizing, using a programmable computer, logic that

can generate a clock suspension allowance signal based
on slack information related to speed constraints of one
or more clock signals associated with one or more
dynamic targets of the emulator; and

synthesizing, using a programmable computer, logic that

can generate a clock suspension signal for enabling tem-
porary suspensions of design clock signals in the emu-
lator based on the clock suspension request signal and
the clock suspension allowance signal.

2. The method recited in claim 1, wherein the one or more
emulator resources comprise software environment.

3. The method recited in claim 1, wherein the one or more
emulator resources comprise a design memory.

4. The method recited in claim 1, wherein the activity status
information is determined based on data generation speed
information, data transfer speed information, data buffer sta-
tus information, or any combination thereof.

5. The method recited in claim 1, wherein the speed con-
straints of the one or more clock signals comprise information
of'a maximum number of emulator infrastructure clock peri-
ods allowed for suspending each of the one or more clock
signals.

US 9,165,099 B2

9

6. The method recited in claim 1, wherein the clock sus-
pension signal is activated only when both of the clock sus-
pension request signal and the clock suspension allowance
signal are activated.

7. The method recited in claim 6, wherein the clock sus-
pension signal is activated immediately after the clock sus-
pension request signal is activated.

8. The method recited in claim 6, wherein the clock sus-
pension signal is activated if a next design clock edge is for a
clock signal associated with a dynamic target.

9. The method recited in claim 6, wherein the clock sus-
pension signal is activated when a data buffer for communi-
cation with the software environment is filled to a threshold
level.

10. One or more non-transitory computer-readable media
storing computer-executable instructions for causing one or
more processors to perform a method, the method compris-
ing:

synthesizing using a programmable computer, logic that

can generate a clock suspension request signal based on
activity status information of an emulator with one or
more emulator resources;

synthesizing, using a programmable computer, logic that

can generate a clock suspension allowance signal based
on slack information related to speed constraints of one
or more clock signals associated with one or more
dynamic targets of the emulator; and

synthesizing, using a programmable computer, logic that

can generate a clock suspension signal for enabling tem-
porary suspensions of design clock signals in the emu-
lator based on the clock suspension request signal and
the clock suspension allowance signal.

11. The one or more non-transitory computer-readable
media recited in claim 10, wherein the one or more emulator
resources comprise software environment.

12. The one or more non-transitory computer-readable
media recited in claim 10, wherein the one or more emulator
resources comprise a design memory.

13. The one or more non-transitory computer-readable
media recited in claim 10, wherein the activity status infor-
mation is determined based on data generation speed infor-
mation, data transfer speed information, data buffer status
information, or any combination thereof.

14. The one or more non-transitory computer-readable
media recited in claim 10, wherein the speed constraints of
the one or more clock signals comprise information of a
maximum number of emulator infrastructure clock periods
allowed for suspending each of the one or more clock signals.

15. The one or more non-transitory computer-readable
media recited in claim 10, wherein the clock suspension
signal is activated only when both of the clock suspension
request signal and the clock suspension allowance signal are
activated.

10

15

40

45

10

16. The one or more non-transitory computer-readable
media recited in claim 15, wherein the clock suspension
signal is activated immediately after the clock suspension
request signal is activated.

17. The one or more non-transitory computer-readable
media recited in claim 15, wherein the clock suspension
signal is activated if a next design clock edge is for a clock
signal associated with a dynamic target.

18. The one or more non-transitory computer-readable
media recited in claim 15, wherein the clock suspension
signal is activated when a data buffer for communication with
the software environment is filled to a threshold level.

19. A method, comprising:

generating, by logic for generating clock suspension

request signal, a clock suspension request signal based
on activity status information of an emulator with one or
more emulator resources;

generating, by logic for generating clock suspension allow-

ance signal, a clock suspension allowance signal based
on slack information related to speed constraints of one
or more clock signals associated with one or more
dynamic targets of the emulator; and

generating, by logic for generating clock suspension sig-

nal, a clock suspension signal for enabling temporary
suspensions of design clock signals in the emulator
based on the clock suspension request signal and the
clock suspension allowance signal.

20. The method recited in claim 19, wherein the one or
more emulator resources comprise software environment.

21. The method recited in claim 19, wherein the one or
more emulator resources comprise a design memory.

22. The method recited in claim 19, wherein the activity
status information is determined based on data generation
speed information, data transfer speed information, data
buffer status information, or any combination thereof.

23. The method recited in claim 19, wherein the speed
constraints of the one or more clock signals comprise infor-
mation of a maximum number of emulator infrastructure
clock periods allowed for suspending each of the one or more
clock signals.

24. The method recited in claim 19, wherein the clock
suspension signal is activated only when both of the clock
suspension request signal and the clock suspension allowance
signal are activated.

25. The method recited in claim 24, wherein the clock
suspension signal is activated immediately after the clock
suspension request signal is activated.

26. The method recited in claim 24, wherein the clock
suspension signal is activated if a next design clock edge is for
a clock signal associated with a dynamic target.

27. The method recited in claim 24, wherein the clock
suspension signal is activated when a data buffer for commu-
nication with the software environment is filled to a threshold
level.

